Budding Yeast Mitotic Chromosomes Have an Intrinsic Bias to Biorient on the Spindle

نویسندگان

  • Vahan B. Indjeian
  • Andrew W. Murray
چکیده

BACKGROUND Chromosomes must biorient on the mitotic spindle, with the two sisters attached to opposite spindle poles. The spindle checkpoint detects unattached chromosomes and monitors biorientation by detecting the lack of tension between two sisters attached to the same pole. After the spindle has been depolymerized and allowed to reform, budding yeast sgo1 mutants fail to biorient their sister chromatids and die as cells divide. RESULTS In sgo1 mutants, chromosomes attach to microtubules normally but cannot reorient if both sisters attach to the same pole. The mutants' fate depends on the position of the spindle poles when the chromosomes attach to microtubules. If the poles have separated, sister chromatids biorient, but if the poles are still close, sister chromatids often attach to the same pole, missegregate, and cause cell death. CONCLUSIONS These observations argue that budding yeast mitotic chromosomes have an intrinsic, geometric bias to biorient on the spindle. When the poles have already separated, attaching one kinetochore to one pole predisposes its sister to attach to the opposite pole, allowing the cells to segregate the chromosomes correctly. When the poles have not separated, the second kinetochore eventually attaches to either of the two poles randomly, causing orientation errors that are corrected in the wild-type but not in sgo1 mutants. In the absence of spindle damage, sgo1 cells divide successfully, suggesting that kinetochores only make stable attachments to microtubules after the cells have entered mitosis and separated their spindle poles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The overexpression of a Saccharomyces cerevisiae centromeric histone H3 variant mutant protein leads to a defect in kinetochore biorientation.

Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH...

متن کامل

The Mitotic Arrest in Response to Hypoxia and of Polar Bodies during Early Embryogenesis Requires Drosophila Mps1

Mps1 kinase plays an evolutionary conserved role in the mitotic spindle checkpoint. This system precludes anaphase onset until all chromosomes have successfully attached to spindle microtubules via their kinetochores. Mps1 overexpression in budding yeast is sufficient to trigger a mitotic arrest, which is dependent on the other mitotic checkpoint components, Bub1, Bub3, Mad1, Mad2, and Mad3. Th...

متن کامل

A chromosome breakage assay to monitor mitotic forces in budding yeast.

During the eukaryotic cell cycle, genetic material must be accurately duplicated and faithfully segregated to each daughter cell. Segregation of chromosomes is dependent on the centromere, a region of the chromosome which interacts with mitotic spindle microtubules during cell division. Centromere function in the budding yeast, Saccharomyces cerevisiae, can be regulated by placing an inducible ...

متن کامل

Sli15INCENP Dephosphorylation Prevents Mitotic Checkpoint Reengagement Due to Loss of Tension at Anaphase Onset

The mitotic checkpoint, also known as the spindle assembly checkpoint, delays anaphase onset until all chromosomes have reached bipolar tension on the mitotic spindle [1-3]. Once this is achieved, the protease separase is activated to cleave the chromosomal cohesin complex, thereby triggering anaphase. Cohesin cleavage releases tension between sister chromatids, but why the mitotic checkpoint n...

متن کامل

The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint.

The spindle checkpoint prevents cell cycle progression in cells that have mitotic spindle defects. Although several spindle defects activate the spindle checkpoint, the exact nature of the primary signal is unknown. We have found that the budding yeast member of the Aurora protein kinase family, Ipl1p, is required to maintain a subset of spindle checkpoint arrests. Ipl1p is required to maintain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007